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Inorganic compounds with nickel in the oxidation
state +1 are rarely known. In oxide chemistry only
few examples are reported [1], all with Ni** in lin-
ear coordination by oxo-ligands. In the last decade
only, the study of ternary and higher nitridometa-
lates has been a rapidly growing field of inorganic
solid state chemistry [2,3] and led to an abundance
of Ni*! compounds. Ternary lithium nitridonicke-
lates(l) Li,[(Li;_Ni)N] (Fig. 1), derived from the
binary fast lithium ion conductor «-LisN =
Li,[LiN] [4], have attracted considerable attention.
The crystal structures of phases Li,[(Li;_yM,)N]
with M = Cu, Ni, Co have already been reported as
early as 1949 by Sachsze and Juza [5]. Recently,
the respective substitution phases with M = Mn, Fe
were also described [6].

In contrast to the ternary lithium substitution
phases, the ternary alkaline earth nitridonickelates
Ca[Ni*!N] [7, 8], Sr[Ni**N] [9], Ba[Ni*'N] [10],
and BagN[Ni™®'N]s [11] show no substitution
effects between nickel and the alkaline earth ele-
ments. A recent re-investigation of the system Ba-
Ni-N resulted in the compound Ba,[NisN,] [12]
(Fig. 2a). The distinct and low average oxidation
states fueled our interest in the electronic and mag-
netic properties of these compounds. Also in qua-
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Fig.1: Crystal structure of a-LisN = Li,[LiN] and
Li,[(Liy NiN].

ternary lithium alkaline-earth nitridonickelates,
substitution of nickel by lithium takes place readily
[13], but up to now, no data on physical properties
are available.

The crystal structure of «-LisN = Li,[LiN]
(Fig. 1) contains infinite chains . [LiNZ,] of alter-
nating nitrogen and lithium (Li(1)) atoms. These
chains are interconnected via further Li(2) in trigo-
nal planar coordination by N within the layers
formed by the nitride species (“Li,N”-layers) [4].
In the crystal structure of Li,[(Li;_(Ni,)N], the lin-
early by nitrogen coordinated Li(1) site is partially
substituted by Ni in a random manner. For the Ni
substitution series single phase samples with x up
to 0.85(1) were obtained, while a sample with x =
0.93 contained small amounts of elemental Ni. The
samples were of deep maroon color at low x and
brass colored for x = 0.79. This change in color as
a function of x is associated with the appearance of
metallic conductivity at high x values (see below).
The dependences of the unit cell parameters a and
¢, of the average chain length g =1 + x/(1 - x), and
of the distance d(Li/Ni—N) on x are plotted in Fig.
3. With increasing x the parameter ¢ decreases
nearly linearly (the data of the x = 0.34(1) and x =
0.43(1) samples included in the plot were previous-
ly determined on single crystals [13]). In contrast,
the parameter a, related to the distance d(Li(2)-N)
within the crystallographic (001) plane, increases
only slightly. The parameters c of phases with x =
0.79 are already shorter than two times the bond
lengths in the structurally related compounds
Li[Ni**N] [14], Lig[Ni""“*'N], [14, 15] and
Ca[Ni"™N] [7, 8]. Based on our X-ray diffraction
Rietveld refinements, the characteristic mass
changes during TG experiments, and the chemical
analyses, the vacancy concentration within the
basal plane (Li(2)) is much lower (= 5 %) than
concluded from neutron diffraction studies by dif-
ferent authors (17 % — 42 % [16, 17]). The mag-
netic moments observed in samples of the isostruc-
tural copper series Li,[(Li;_«Cu,)N] indicate, that
the Li(2) vacancy concentration, which is expected
to lead to the formation of M*? species, must be
even smaller (= 1 %).
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Fig. 2: a) Crystal structure of Ba,[NizN,], b) The complex anion 2[NisN,*], c) Ba,[NisN,]: Lattice parameters as a
function of temperature. Presumable structural changes within the complex anion s [NisN," ] with decreasing temper-
ature are illustrated, d) Magnetic susceptibility of Ba,[NisN,] as a function of T.

The crystal structure of Ba,[Ni;N,] (Fig. 2a) con-
sists of puckered layers 2[Ni;N5] stacked in an
AB-sequence. The complex anion [Ni;N5] (Fig.
2b) is the first two-dimensional (2D) anion report-
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Fig. 3: Hexagonal unit cell parameters a (circles) and ¢
(squares) of Li,[(Li,_,Ni,)N] as a function of x. Dotted
lines are guides to the eye. d(Li/Ni-N) and average
chain length g are shown as inset.

ed for either cobalt, nickel, or copper nitrido-com-
pounds. Nitrogen is coordinated octahedrally by
three Ni and three Ba, Ba has a distorted trigonal
planar coordination by N, and Ni is linearly coordi-
nated by N. However, it should be noted that the
Ni-N bond lenghts within the infinite chains are
shorter compared to the connecting dumb-bells,
but both distances are within the range observed
for other nitridonickelates (Fig. 4). Powder X-ray
diffraction studies of the low temperature behavior
of Ba,[Ni;N,] (Fig. 2c) show a presumably second
order phase transition at T ~ 100 K which affects
the intra- and interlayer distances.

Electrical resistivity measurements (Fig. 5) of the
solid solution series Li,[(Li;_4Ni,)N] reveal an
insulator — metal transition with increasing x at x ~
0.80. Corresponding measurements of the electri-
cal resistivity of barium nitridonickelates show
metal-like behavior. Ba,[NisN,] exhibits the lowest
resistivity and its crystallographic/magnetic transi-
tion at T ~ 100 K is mirrored by a change of the
slope of the resistivity at the same temperature.
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Fig. 4: One dimensional complex anions NiN3,] in
alkaline-earth nitridonickelates and selected distances
d(Ni--Ni) and d(Ni-N).
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Fig.5: Electrical resistivity of Li,[(Li;_Ni,)N], Ba[NiN],
BagN[NiN];, and Ba,[Ni3N,] as a function of T (upper
panel: logarithmic scale, lower panel: linear scale).
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Fig. 6: Inverse magnetic susceptibilities of

Li,[(Li;_4Ni)N]. Numbers refer to the respective x val-
ues in %. The 1/y curve for x = 0.85 is reduced by a fac-
tor of four.

The magnetic properties of low-valency nitrido-
nickelates were measured in a wide range of magnet-
ic fields. The inverse magnetic susceptibilities per
mole Ni for the substitution series Li,[(Li;_Ni)N]
are displayed in Fig. 6. In most cases x(T) obeys a
Curie-Weiss law x(T) = C/(T — ) above tempera-
tures of 30 K — 50 K. The effective magnetic mo-
ments u./Ni-atom obtained by fitting the experi-
mental data to the above equation are depicted in
Fig. 7. They display a strong systematic variation
with x. In samples with small X, w./Ni-atom is
large and significantly exceeds the spin-only value
for the 3d° configuration expected for Ni*! (dashed
level in Fig. 7). For x > 0.4 the effective magnetic
moment becomes lower than the respective spin-
only value. For intermediate X, w.q/Ni-atom varies
almost linearly with x. This variation is accompa-
nied by a systematic variation of the Weiss constant
6, which is negative and whose absolute value in-
creases with x. Such strongly negative values of 6
indicate antiferromagnetic exchange interactions
between the Ni** ions, however, no indication of
long-range magnetic order was found for any sam-
ple. In (hypothetical) samples with x = 1 the nickel
species are within infinite Ni-N-Ni chains which
are arranged to form hexagonal bundles. The ran-
dom substitution of the Li(1) sites by Ni-ions in the
range of compositions with 0 < x < 1 leads to dif-
ferent environments for the magnetic species, inter-
ruption of the Ni-N-Ni chains, and to glassy mag-
netic states at low temperature. For samples with
low x this state might be a spin glass. With increas-
ing x the antiferromagnetic interactions become
stronger but the segmentation of the chains pre-
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Fig. 7: Effective magnetic moment p,/Ni-atom of sam-
ples Liy[(Li;_\Ni,)N] plotted against the substitution
parameter x. The horizontal levels indicate the spin-only
moments expected for d° and d® states. Open symbols
indicate the values reported for Ca[Ni*'N] [7, 20].

vents the spin system from long-range ordering.
For small x the w./Ni-atom is significantly larger
than the spin-only value and can not be explained
completely by the presence of Li(2) vacancies.
Assuming a large value y(g,Li(2)) = 0.01 of defects
implies for x = 0.10 a Ni*? concentration of 20 %,
which results in only ues/Ni-atom = 2 pg (assum-
ing spin-only values), while the experimental val-
ues increase up to 2.42 wg. From observations
recently made for the isostructural Li,[(Li;_.Fe,)N]
series (samples with x = 0.21 and 0.16) [18, 19], it
can be suspected that a similar interplay of correla-
tion and orbital effects as in Li,[(Li;_Fe,)N] leads
to the strong enhancement of w.¢/Ni-atom for low
X (see “Chemical Bonding Induced Large Magnetic
Effects in Li,[(Li;_Fe,)N]™).

On the other hand, the decrease of w.x/Ni-atom
for x > 0.4 can not be explained by Li(2) defects at
all. The magnetism of the hypothetical Li,[Ni*'N]
might be approximated by the behavior of
Ca[Ni*!N], which contains similar linear chains
LINiN3,] [7, 8]. These chains are arranged
parallel in layers, with the chains in adjacent layers
running in perpendicular direction. Ca[NiN] is a
metal displaying both Pauli paramagnetism and an
electronic term in the heat capacity [7, 20]. The
magnetic susceptibility, besides some Ni impuri-
ties, follows a modified Curie-Weiss-law x(T) = xq
+ C/(T — 6) [7]. If the resulting wq/Ni-atom =
0.39 g is considered to be intrinsic, it could be
assigned to the segmentation of the chains due to
defects within the real crystal structure. Different
authors found a value of u.s/Ni-atom = 0.16 pg
[20]. It can be assumed that an ideal crystal would

have no intrinsic Curie-like paramagnetic contribu-
tion. The literature values for . of Ca[Ni*'N] are
included in Fig. 7 and fit well into the trend
observed for Li,[(Li;_Ni,)N] phases. It may there-
fore be concluded, that the hypothetical Li,[Ni*™*N]
(x =1) is also a 1D metal and that the systematic
variation of p is due to the metal-insulator transi-
tion caused by the gradual formation of longer
chain segments [NiN3,], (see inset Fig. 3) and the
delocalization of the Ni electronic states with
increasing X.

The magnetic susceptibility of Ba,[NisN,] (Fig.
2d) can be approximated by a Curie-Weiss law only
at high temperatures. The effective magnetic
moment per formula unit w.q/f.u. = 2.5 pg above
150 K is consistent with two Ni** species on the
chain-sites and one non-magnetic Ni° species in the
“connection-site”, as required by the charge bal-
ance, i.e., Ba,[Ni3*Ni’N,]. The magnetic system
might be therefore a 2D quantum spin (S = %)
square lattice. Indeed, the rounding of x(T) below T
~ 150 K and the reduction of y(T) below T ~ 100 K
is the typical signature of such a 2D quantum spin
Heisenberg antiferromagnet on the square lattice.
The kink in x(T) at Ty = 100 K and the concomi-
tant strong reduction of the electrical resistivity
indicate the long-range antiferromagnetic (Néel)
ordering of the Ni*! moments. The relatively high
Ty compared to the temperature of the maximum in
x(T) indicates a strong out-of-plane exchange
coupling. The large spin-disorder scattering contri-
bution in p(T) above Ty and the coupling to a struc-
tural distortion render this compound an interesting
magnetic system.

For independent information on the valence
states of nickel we employed X-ray absorption
spectroscopy (XAS) at the K-threshold of Ni.
Figure 8a shows NiK XAS spectra of phases
Li,[(Li,_,Niy)N] with different x, together with
spectra of Ni and Ni*?O as references. The spectra
exhibit an enhanced pre-edge feature around
8337 eV due to breaking of the local centro-sym-
metry at Ni by Li-Ni-disorder within the lateral
environment. This enhanced 1s — 3d transition lies
close to the main edge jump 1s — 4p above
8345 eV (only observed as a shoulder), thus the
inflection point of the main absorption edge and
the pre-edge peak can not be determined independ-
ently. The edge energies of the substitution phases
are much closer to those of Ni than to the Ni**-
reference compounds. Comparing different compo-
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Fig. 8: XAS spectra at the NiK edge of phases a)
Li,[(Li;_Ni,)N] at 298 K, b) Ba,[Ni;N,] at different tem-
peratures. Reference compounds were added for compa-
rision.

dP/dH

sitions, the main structure gains intensity due to 4p
e~ charge reduction and the pre-edge peak looses
intensity, i.e., less 1s — 3d transition occurs in the
spectrum for the phase with the lowest x. This cor-
responds to a larger proportion of Ni in a highly
symmetric surrounding with six Li-neighbors with-
in the lateral plane in the phases with small x (in
other words, a smaller degree of 4p/3d mixing) in
agreement with the statistical distribution of Ni
over the Li(1) positions from the structural model.
But altogether, the difference in the intensities of
the pre-edge features for different compositions are
hardly visible, indicating only a small shift of the
pre-edge peak and the main absorption to higher
energies with respect to Ni metal. Still, the results
indicate an average oxidation state of Ni for the
whole Li,[(Li,_,Ni,)N] series only slightly above
+1, most likely compensated within the crystal
structure by Li-vacancies. ESR measurements con-
firmed the +1 oxidation state of the Ni ion; the ESR
spectrum of Li,[(Li;_,Ni,)N] (x=0.04)at T=4.2K
(Fig. 9) is represented by a very intensive line with
ga ~ 3.8 and two other weaker signals gg; ~ 2.68
and gg, ~ 2.08. These three lines correspond to Ni**
ions [21], which are located within three different
lateral environments built up by six Li/Ni positions.

The XAS spectra of Ba,[NizN,] for different tem-
peratures are shown in Fig. 8b. Due to the non-
centrosymmetrical local symmetry of Ni and the
two crystallographic independent Ni atoms in this
structure, the spectra show several transitions close
in energy. The four prominent steps become slight-
ly more pronounced with decreasing temperature,
but remain at a constant energy level. A detailed
investigation of this observation is currently underway.
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Fig. 9: ESR spectrum of Li,[(Li;_,Ni,)N] (x = 0.04) at T
=4.2K.
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